Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Chinese Journal of Neurology ; (12): 368-371, 2020.
Article in Chinese | WPRIM | ID: wpr-870821

ABSTRACT

A male patient of acute onset is reported, whose main clinical manifestations were ataxia and dysarthria, with elevated carcinoembryonic antigen, non-small cell lung cancer antigen, carbohydrate antigen 72-4, positive anti-Yo antibody. The patient′s gastroscopy and biopsy result suggested gastric cancer, and his symptoms got better after radical surgery. Anti-Yo-associated paraneoplastic cerebellar degeneration complicated with gastric adenocarcinoma was diagnosed. If encountering cases of ataxia or dysarthria in clinical work, the possibility of paraneoplastic cerebellar degeneration should be considered and evidence for tumor should be searched, so as to avoid missed diagnosis or misdiagnosis.

2.
Chinese Journal of Tissue Engineering Research ; (53): 20-25, 2016.
Article in Chinese | WPRIM | ID: wpr-485718

ABSTRACT

BACKGROUND:The microRNAs are involved in regulation of stem cel proliferation, differentiation and aging. To study the effect of Let-7c, a member of Let-7, on the neural differentiation of bone marrow mesenchymal stem cels provides new ideas for stem cel therapy. OBJECTIVE: To investigate the role of Let-7c in the neural differentiation of bone marrow mesenchymal stem cels. METHODS: The lentiviral vectors of Let-7c-up and Let-7c-inhibition were constructed and transfected into rat bone marrow mesenchymal stem cels. Optimal multiplicity of infection was screened. The cels were divided into non-transfected group, negative control group (transfected with empty virus), transfected enhancement group (transfected with LV-rno-Let-7c-up), transfected inhibition group (transfected with LV-rno-Let-7c-5p-inhibition). Bone marrow mesenchymal stem cels were treated with fasudil as an inducer for triggering the cels to differentiate into neurons. The fluorescence expressed by transfected cels was observed under inverted fluorescence microscope. The expression of neuron-specific markers, neuron-specific enolase and microtubule-associated protein 2, were measured by immunocytochemical method. The mRNA expression of microtubule-associated protein 2 was detected by RT-PCR. The cel viability was determined by MTT method. RESULTS AND CONCLUSION:Under the inverted fluorescence microscope, the cels were successfuly transfected with LV-rno-Let-7c-up and LV-rno-Let-7c-5p-inhibition. Fasudil induced bone marrow mesenchymal stem cels to differentiate into neurons. The transfection efficiency and expression levels of neuron-specific enolase and microtubule-associated protein 2 in the transfected enhancement group were significantly higher than those in the negative control group (P < 0.05), while in the transfected inhibition group, they were lower than those in the negative control group (P < 0.05). These findings indicate that the differentiation percentage of bone marrow mesenchymal stem cels is increased by fasudil after transfection with LV-rno-Let-7c-up, and Let-7c may promote the differentiation of bone marrow mesenchymal stem cels into neurons.

3.
Chinese Journal of Tissue Engineering Research ; (53): 8048-8055, 2015.
Article in Chinese | WPRIM | ID: wpr-484323

ABSTRACT

BACKGROUND:There is no clear understanding about the effect of let-7f and interleukin-6 (IL-6) on the proliferation of bone marrow mesenchymal stem cels and their relationship. OBJECTIVE: To explore the effects of expression levels of let-7f and IL-6 on the proliferation of bone marrow mesenchymal stem cels and their relationship. METHODS:(1) LV-rno-let-7f-up and LV-rno-let-7f-down were constructed and transfected into bone marrow mesenchymal stem cels of Sprague-Dawley rats, respectively. Then, there were four groups in the study: transfection upregulation group transfected with LV-rno-let-7f-up), transfection inhibition group (transfected with LV-rno-let-7f-down), negative control group (transfected with FU-RNAi-NC-LV), and untransfected group. The expression level of let-7f in each group was detected by qRT-PCR. The proliferation ability of cels and expression levels of IL-6 when let-7f expression was at different levels were detected by MTT, flow cytometry and ELISA. The expression of Cyclin D1 at mRNA and protein levels was detected by qRT-PCR and western blot, respectively. (2) To predict the potential target gene of let-7f, the wild-type/mutant IL-6 3’UTR reporter gene vectors were constructed, and cotransfected with let-7f/let-7f inhibitor respectively into the 293T cels to measure the luciferase. RESULTS AND CONCLUSION: Compared with the negative control group, the proliferative and cloning capacities of cels in the transfection upregulation group were higher; the number of cels was significantly decreased at G1 stage and increased at S stage, and the apoptotic cels were reduced in number (P 0.05). Luciferase activity of cels transfected with wide-type IL-6 3’UTR and let-7f was significantly reduced (P < 0.05). These findings indicate that up-regulation of let-7f can promote the proliferative and cloning capacities of bone marrow mesenchymal stem cels and reduce cel apoptosis, but downrelation of let-7f exhibits an inhibitory effect. Overexpression of IL-6 can suppress the proliferation of bone marrow mesenchymal stem cels, which is considered to be a target gene of let-7f, and let-7f may suppress the expression of IL-6 to promote the cel proliferation.

4.
Chinese Journal of Tissue Engineering Research ; (53): 6603-6608, 2014.
Article in Chinese | WPRIM | ID: wpr-475348

ABSTRACT

BACKGROUND:MicroRNA plays an important role in the process of growth and aging of living body. To know the role of let-7d in inducing bone marrow mesenchymal stem celldifferentiation into neurons can promote the stem celltransplantation. OBJECTIVE:To investigate the role of let-7d in inducing bone marrow mesenchymal stem celldifferentiation into neurons. METHODS:(1) The lentiviral vector of let-7d was constructed and transfected into rat bone marrow mesenchymal stem cells. The cells were divided into non-transfected group, negative control group (transfected with FU-RNAi-NC-LV), transfected enhancement group (transfected with let-7d-LV), transfected inhibition group ( transfected with let-7d-inhibition-LV). (2) Rat bone marrow mesenchymal stem cells were treated with fasudil as an inducer for triggering the cells to differentiate into neurons. The expression of neuron-specific markers, neuron-specific enolase and microtubule-associated protein 2, were measured by immunocytochemical method. The mRNA expression of microtubule-associated protein 2 was detected by RT-PCR. The viability of bone marrow mesenchymal stem cells was determined by MTT method. RESULTS AND CONCLUSION:Under inverted fluorescence microscope, the cells were successful y transfected with let-7d. Fasudil induced bone marrow mesenchymal stem cells to differentiate into neurons. The transfection efficiency and expression levels of neuron-specific enolase and microtubule-associated protein 2 in transfected enhancement group were higher than those in the negative control group (P<0.05);while in the inhibition group, they were lower than those in the negative control group (P<0.05). These findings indicate that let-7d can promote the differentiation of bone marrow mesenchymal stem cells into neurons induced by fasudil, and by control ing the expression of let-7d we can influence the differentiation efficiency from bone marrow mesenchymal stem cells to neurons.

5.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 563-6, 2009.
Article in English | WPRIM | ID: wpr-634658

ABSTRACT

The effects of vascular endothelial growth factor (VEGF) on neural differentiation of human embryonic stem cells (hESCs) in vitro and the possible mechanism were observed. The hESCs lines, TJMU1 and TJMU2, were established and stored by our laboratory. hESCs differentiated into neuronal cells through embryonic body formation. In this induction process, hESCs were divided into three groups: group A, routine induction; group B, routine induction+10 ng/mL VEGF; group C, routine induction+10 ng/mL VEGF+10 ng/mL VEGFR2/Fc. OCT4, Nestin and GFAP in each group were detected by RT-PCR, and the cells expressing Nestin and GFAP were counted by immunofluorescence. The percentage of Nestin positive cells in group B was significantly higher than in groups A and C, while the percentage of GFAP positive cells in group B was significantly lower than in groups A and C (P0.05). It was concluded that VEGF, via VEGFR2, stimulated the neural differentiation of hESCs in vitro.

SELECTION OF CITATIONS
SEARCH DETAIL